Learner-aware Teaching:

Inverse Reinforcement Learning with Preferences and Constraints

Sebastian Tschiatschek^{1*}, Ahana Ghosh^{2*}, Luis Haug^{3*}, Rati Devidze², Adish Singla²

¹Microsoft Research, ²ETH Zurich, ³Max Planck Institute for Software Systems, *equal contribution

Highlights

Problem setting

- Teaching a *learner with preferences* via demonstrations
- Studied two teaching strategies

Learner-aware teaching

w*

demo

Ignoring learner's preferences

Considering learner's preferences

Main results

- Learner-agnostic teaching can be arbitrarily bad
- New algorithms for learner-aware teaching achieving high performance

A Teacher and an IRL Learner Without Preferences

- MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, \gamma, R)$ with rewards $R(s) = \langle w^*, \phi_r(s) \rangle$
- Teacher T provides demonstrations using policy π^T in $\mathfrak M$
- Policy π has reward $R(\pi) = \langle w^*, \mu_r(\pi) \rangle$, where $\mu_r(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi_r(s) \mid \pi\right]$
- Learner receives demonstrations and outputs π^L s.t. $\|\mu_r(\pi^L) \mu_r(\pi^T)\| \leq \epsilon$
- This ensures that $R(\pi^{\mathsf{L}}) \geqslant R(\pi^{\mathsf{T}}) \epsilon$

Challenges in Teaching Learners With Preferences

- Object-world gathering game
- * yields reward 1.0, + yields reward 0.9
- Learner's preference: Avoid frequent proximity of green cells (≤ 1-cell distance)

• Providing demonstrations from optimal behavioral policy π^* can lead to arbitrarily bad learner's performance!

Learner Models

- Learner's preferences are captured by features $\phi_c(s)$
- Formalized as constraints on $\mu_c(\pi)$, where $\mu_c(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \phi_c(s) \mid \pi\right]$

Standard maximum causal entropy IRL learner

$$\max_{\pi} \ H(\pi)$$
 causal entropy
$$\text{s.t.} \ \|\mu_r(\pi) - \mu_r(\pi^\mathsf{T})\| = 0$$
 feature matching

Learner with hard preferences

$$\min_{\pi} \quad \|\mu_r(\pi) - \mu_r(\pi^\mathsf{T})\| \qquad \qquad \textit{feature matching}$$

$$\text{s.t.} \quad g(\mu_c(\pi)) \leqslant 0 \qquad \qquad \textit{hard preferences}$$

Learner with soft preferences

$$\begin{split} \max_{\pi, \delta_r^{\text{soft}}, \delta_c^{\text{soft}}} & \ H(\pi) - C_r \|\delta_r^{\text{soft}}\|_p - C_c \|\delta_c^{\text{soft}}\|_p \\ \text{s.t.} & \ \|\mu_r(\pi) - \mu_r(\pi^\mathsf{T})\| \leqslant \delta_r^{\text{soft}} & \ feature \ matching \\ g(\mu_c(\pi)) \leqslant \delta_c^{\text{hard}} + \delta_c^{\text{soft}} & \ hard+soft \ preferences \end{split}$$

Learner trades-off reward-feature matching and its own preferences

Learner-Aware Teaching for Known Constraints

Learner-aware teaching for hard preferences: AWARE-CMDP

- Define a set of feasible reward feature expectations $\Omega_r^L = \{\mu_r(\pi) \mid g(\mu_c(\pi)) \leq 0\}$
- Optimal teaching policy = solution of constrained MDP:

$$\max_{\pi^{\mathsf{T}}} \ \langle w^*, \mu_r(\pi^{\mathsf{T}}) \rangle \ \text{ s.t. } \mu_r(\pi^{\mathsf{T}}) \in \Omega^{\mathsf{L}}_r$$

• Theorem. The value of learner-aware teaching can be arbitrarily high, given by

$$\max_{\pi \text{ s.t. } \mu_r(\pi) \in \Omega_r^{\mathsf{L}}} \langle w^*, \mu_r(\pi) \rangle - \langle w^*, \mathsf{Proj}_{\Omega_r^{\mathsf{L}}}(\mu_r(\pi^*)) \rangle$$

• For linear $g(\cdot)$, the above problem can be solved via linear programming

Learner-aware teaching for soft preferences: AWARE-BIL

• Optimal teaching problem can be formulated as a bi-level optimization:

$$\max_{\pi^{\mathsf{T}}} \ \langle w^*, \mu_r(\pi^{\mathsf{L}}) \rangle \quad \text{s.t. } \pi^{\mathsf{L}} \in \arg\max_{\pi} \mathsf{IRL}(\pi, \mu(\pi^{\mathsf{T}}))$$

- Here $IRL(\pi, \mu(\pi^T))$ stands for the IRL problem solved by the learner
- Optimal teaching policy is a softmax policy satisfying the learner's constraints
- A challenging non-convex optimization problem
- Proposed a gradient-based optimization approach

Experimental Results

Experimental setup

- Object-world gathering environment:
- Rewards: * yields 1.0, + yields 0.9, yields 0.2
- Two "green" distractors at 0-cell and 1-cell distance to the ★ objects
- Two "yellow" distractors at 1-cell and 2-cell distance to the + objects
- Discount factor $\gamma = 0.99$
- Learners with soft preferences ($C_r = 5$, $C_c = 10$) and $\delta_c^{\mathsf{hard}} = 0$
- Environment and learners' preferences for 5 different learners L1, ..., L5

• For instance, L2 has two preference features indicating whether there is a green cell at a distance of 0-cells or 1-cell, respectively

Learner-aware teaching for known constraints

Learners' rewards inferred from learner-agnostic teacher (AGNOSTIC)

Learners' rewards inferred from learner-aware teacher (AWARE-BIL)

Teacher	L1	L2	L3	L4	L5
AGNOSTIC	7.99 ± 0.02	0.01 ± 0.00	0.01 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
Aware-BiL	8.00 ± 0.02	7.20 ± 0.01	4.86 ± 0.30	3.15 ± 0.27	1.30 ± 0.07

Further Results

- Algorithms for learner-aware teaching with unknown constraints
- Additional experimental results
- Formal statements, proofs, and derivations

