Publications

For an up-to-date list of my publications, please see my google scholar page.

2022

  1. Han, D., Wooldridge, M., Rogers, A., Ohrimenko, O., & Tschiatschek, S. (2022). Replication robust payoff allocation in submodular cooperative games. IEEE Transactions on Artificial Intelligence (IEEE TAI).
  2. Lindner, D., Tschiatschek, S., Hofmann, K., & Krause, A. (2022). Interactively Learning Preference Constraints in Linear Bandits. International Conference on Machine Learning (ICML), 13505–13527.
  3. Ghosh, A., Tschiatschek, S., Devlin, S., & Singla, A. (2022). Adaptive Scaffolding in Block-Based Programming via Synthesizing New Tasks as Pop Quizzes.
  4. Han, D., & Tschiatschek, S. (2022). Option Transfer and SMDP Abstraction with Successor Features. International Joint Conference on Artificial Intelligence (IJCAI).
  5. Tschiatschek, S., Knobelsdorf, M., & Singla, A. (2022). Equity and Fairness of Bayesian Knowledge Tracing. Educational Data Mining (EDM).

2021

  1. Lindner, D., Turchetta, M., Tschiatschek, S., Ciosek, K., & Krause, A. (2021). Information Directed Reward Learning for Reinforcement Learning. Advances in Neural Information Processing Systems.
  2. Miklautz, L., Bauer, L. G. M., Mautz, D., Tschiatschek, S., Böhm, C., & Plant, C. (2021). Details (Don’t) Matter: Isolating Cluster Information in Deep Embedded Spaces. International Joint Conference on Artificial Intelligence (IJCAI), 2826–2832.
  3. Morrison, C., Cutrell, E., Grayson, M., Thieme, A., Taylor, A., Roumen, G., Longden, C., Tschiatschek, S., Faia Marques, R., & Sellen, A. (2021). Social Sensemaking with AI: Designing an Open-ended AI experience with a Blind Child. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–14.
  4. Lamb, A., Saveliev, E., Li, Y., Tschiatschek, S., Longden, C., Woodhead, S., Hernández-Lobato, J. M., Turner, R. E., Cameron, P., & Zhang, C. (2021). Contextual HyperNetworks for Novel Feature Adaptation. In arXiv preprint arXiv:2104.05860.
  5. Yin, H., Chen, J., Pan, S. J., & Tschiatschek, S. (2021). Sequential Generative Exploration Model for Partially Observable Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 35(12), 10700–10708.

2020

  1. Han, D., Tople, S., Rogers, A., Wooldridge, M., Ohrimenko, O., & Tschiatschek, S. (2020). Replication-Robust Payoff-Allocation with Applications in Machine Learning Marketplaces. https://arxiv.org/abs/2006.14583
  2. Ma, C., Tschiatschek, S., Hernández-Lobato, J. M., Turner, R., & Zhang, C. (2020). VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data. https://arxiv.org/pdf/2006.11941.pdf
  3. Ghosh, A., Tschiatschek, S., Mahdavi, H., & Singla, A. (2020). Towards Deployment of Robust Cooperative AI Agents: An Algorithmic Framework for Learning Adaptive Policies. International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). http://ifaamas.org/Proceedings/aamas2020/pdfs/p447.pdf
  4. Beck, J., Ciosek, K., Devlin, S., Tschiatschek, S., Zhang, C., & Hofmann, K. (2020). AMRL: Aggregated Memory For Reinforcement Learning. International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=Bkl7bREtDr
  5. Ma, C., Tschiatschek, S., Li, Y., Turner, R., Hernández-Lobato, J. M., & Zhang, C. (2020). HM-VAEs: a Deep Generative Model for Real-valued Data with Heterogeneous Marginals. Proceedings of The 2nd Symposium On Advances in Approximate Bayesian Inference, 118, 1–8. http://proceedings.mlr.press/v118/ma20a/ma20a.pdf
  6. Roth, W., Schindler, G., Zöhrer, M., Pfeifenberger, L., Peharz, R., Tschiatschek, S., Fröning, H., Pernkopf, F., & Ghahramani, Z. (2020). Resource-Efficient Neural Networks for Embedded Systems. https://arxiv.org/pdf/2001.03048.pdf

2019

  1. Ohrimenko, O., Tople, S., & Tschiatschek, S. (2019). Collaborative Machine Learning Markets with Data-Replication-Robust Payments. https://arxiv.org/pdf/1911.09052.pdf
  2. Gong, W., Tschiatschek, S., Turner, R., Nowozin, S., & Hernández-Lobato, J. M. (2019). Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. Neural Information Processing Systems (NeurIPS). https://papers.nips.cc/paper/9621-icebreaker-element-wise-efficient-information-acquisition-with-a-bayesian-deep-latent-gaussian-model.pdf
  3. Tschiatschek, S., Ghosh, A., Haug, L., Devidze, R., & Singla, A. (2019). Learner-aware Teaching: Inverse Reinforcement Learning with Preferences and Constraints. Neural Information Processing Systems (NeurIPS). https://papers.nips.cc/paper/8668-learner-aware-teaching-inverse-reinforcement-learning-with-preferences-and-constraints.pdf
  4. Igl, M., Ciosek, K., Li, Y., Tschiatschek, S., Zhang, C., Devlin, S., & Hofmann, K. (2019). Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck. Neural Information Processing Systems (NeurIPS). https://arxiv.org/pdf/1910.12911.pdf
  5. Janz, D., Hron, J., Mazur, P., Hofmann, K., Hernández-Lobato, J. M., & Tschiatschek, S. (2019). Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning. Neural Information Processing Systems (NeurIPS). https://arxiv.org/pdf/1810.06530.pdf
  6. Ma, C., Gong, W., Tschiatschek, S., Nowozin, S., Hernández-Lobato, J. M., & Zhang, C. (2019). Bayesian EDDI: Sequential Variable Selection with Bayesian Partial VAE. Workshop on Real-World Sequential Decision Making: Reinforcement Learning and Beyond at NeurIPS. https://realworld-sdm.github.io/paper/26.pdf

2018

  1. Haug, L., Tschiatschek, S., & Singla, A. (2018). Teaching inverse reinforcement learners via features and demonstrations. Advances in Neural Information Processing Systems (NeurIPS). https://arxiv.org/abs/1810.08926
  2. Dresdner, G., Tschiatschek, S., Gál, V., & Rätsch, G. (2018). Optimally Searching for Cancer Genes Using Submodular Models. In Workshop on Computational Biology at International Conference on Machine Learning (ICML).
  3. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2018). Sum-Product Networks for Sequence Labeling. https://arxiv.org/pdf/1807.02324.pdf
  4. Roth, W., Peharz, R., Tschiatschek, S., & Pernkopf, F. (2018). Hybrid Generative-Discriminative Training of Gaussian Mixture Models. Pattern Recognition Letters.
  5. Tschiatschek, S., Arulkumaran, K., Stühmer, J., & Hofmann, K. (2018). Variational Inference for Data-Efficient Model Learning in POMDPs. https://arxiv.org/abs/1805.09281
  6. Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., & Krause, A. (2018). Fake News Detection in Social Networks via Crowd Signals. Companion of the The Web Conference 2018 (WWW), 517–524. https://arxiv.org/pdf/1711.09025.pdf
  7. Tschiatschek, S., Sahin, A., & Krause, A. (2018). Differentiable Submodular Maximization. Joint Conference on Artificial Intelligence (IJCAI), 2731–2738. https://www.ijcai.org/proceedings/2018/0379.pdf
  8. Hirnschall, C., Singla, A., Tschiatschek, S., & Krause, A. (2018). Learning User Preferences to Incentivize Exploration in the Sharing Economy. Conference on Artificial Intelligence (AAAI). https://arxiv.org/pdf/1711.08331.pdf

2017

  1. Wossnig, L., Tschiatschek, S., & Zohren, S. (2017). Quantum-classical truncated Newton method for high-dimensional energy landscapes. https://arxiv.org/pdf/1710.07063.pdf
  2. Zhao, J., Djolonga, J., Tschiatschek, S., & Krause, A. (2017). Improving Optimization-Based Approximate Inference by Clamping Variables. Uncertainty in Artificial Intelligence (UAI). http://auai.org/uai2017/proceedings/papers/259.pdf
  3. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2017). Frame and Segment Level Recurrent Neural Networks for Phone Classification. Conference of the International Speech Communication Association (Interspeech), 1318–1322. https://www.tschiatschek.net/files/ratajczak17fsrnn.pdf
  4. Bian, A. A., Buhmann, J. M., Krause, A., & Tschiatschek, S. (2017). Guarantees for Greedy Maximization of Non-submodular Functions with Applications. International Conference on Machine Learning (ICML). https://arxiv.org/pdf/1703.02100.pdf
  5. Tschiatschek, S., Singla, A., & Krause, A. (2017). Selecting Sequences of Items via Submodular Maximization. Conference on Artificial Intelligence (AAAI), 2667–2673. https://www.tschiatschek.net/files/tschiatschek17ordered.pdf

2016

  1. Djolonga, J., Jegelka, S., Tschiatschek, S., & Krause, A. (2016). Cooperative Graphical Models. Neural Information Processing Systems (NIPS). https://papers.nips.cc/paper/6122-cooperative-graphical-models.pdf
  2. Djolonga, J., Tschiatschek, S., & Krause, A. (2016). Variational Inference in Mixed Probabilistic Submodular Models. Neural Information Processing Systems (NIPS). https://papers.nips.cc/paper/6225-variational-inference-in-mixed-probabilistic-submodular-models.pdf
  3. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2016). Virtual Adversarial Training Applied to Neural Higher-Order Factors for Phone Classification. Conference of the International Speech Communication Association (Interspeech), 2756–2760. https://www.tschiatschek.net/files/ratajczak16vat.pdf
  4. Singla, A., Tschiatschek, S., & Krause, A. (2016, June). Actively Learning Hemimetrics with Applications to Eliciting User Preferences. International Conference on Machine Learning (ICML). https://www.tschiatschek.net/files/singla16hemimetric.pdf
  5. Tschiatschek, S., Djolonga, J., & Krause, A. (2016, May). Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation. International Conference on Artificial Intelligence and Statistics (AISTATS). https://www.tschiatschek.net/files/tschiatschek16learning.pdf
  6. Singla, A., Tschiatschek, S., & Krause, A. (2016). Noisy Submodular Maximization via Adaptive Sampling with Applications to Crowdsourced Image Collection Summarization. Conference on Artificial Intelligence (AAAI). https://www.tschiatschek.net/files/singla16noisy.pdf

2015

  1. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2015). Neural Higher-Order Factors in Conditional Random Fields for Phoneme Classification. Conference of the International Speech Communication Association (INTERSPEECH). https://www.tschiatschek.net/files/ratajczak15neural-higher-order.pdf
  2. Peharz, R., Tschiatschek, S., Pernkopf, F., & Domingos, P. M. (2015). On Theoretical Properties of Sum-Product Networks. International Conference on Artificial Intelligence and Statistics (AISTATS). https://www.tschiatschek.net/files/peharz15theoretical.pdf
  3. Tschiatschek, S., & Pernkopf, F. (2015). Parameter Learning of Bayesian Network Classifiers Under Computational Constraints. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 86–101.
  4. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2015). Structured Regularizer for Neural Higher-Order Sequence Models. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 168–183. https://www.tschiatschek.net/files/ratajczak15StructuredRegularizer.pdf
  5. Knoll, C., Rath, M., Tschiatschek, S., & Pernkopf, F. (2015). Message Scheduling Methods for Belief Propagation. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 295–310. https://www.tschiatschek.net/files/knoll15MessageScheduling.pdf
  6. Tschiatschek, S., & Pernkopf, F. (2015). On Reduced Precision Bayesian Network Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(4). https://www.tschiatschek.net/files/tschiatschek15OnReducedPrecisionBNCs.pdf

2014

  1. Tschiatschek, S., Paul, K., & Pernkopf, F. (2014). Integer Bayesian Network Classifiers. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 209–224.
  2. Tschiatschek, S., Iyer, R., Wei, H., & Bilmes, J. (2014). Learning Mixtures of Submodular Functions for Image Collection Summarization. Neural Information Processing Systems (NIPS). https://www.tschiatschek.net/files/tschiatschek14summarization.pdf
  3. Ratajczak, M., Tschiatschek, S., & Pernkopf, F. (2014). Sum-Product Networks for Structured Prediction: Context-Specific Deep Conditional Random Fields. https://www.tschiatschek.net/files/ratajczak14spns.pdf
  4. Pernkopf, F., Peharz, R., & Tschiatschek, S. (2014). Introduction to Probabilistic Graphical Models. In Academic Press Library in Signal Processing (Vol. 1, pp. 989–1064). Elsevier.

2013

  1. Peharz, R., Tschiatschek, S., & Pernkopf, F. (2013). The Most Generative Maximum Margin Bayesian Networks. International Conference on Machine Learning (ICML), 28, 235–243. https://www.tschiatschek.net/files/peharz13MostGenerativeMMBN.pdf
  2. Tschiatschek, S., Cancino Chacón, C. E., & Pernkopf, F. (2013). Bounds for Bayesian Network Classifiers with Reduced Precision Parameters. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3357–3361. https://www.tschiatschek.net/files/tschiatschek13Bounds.pdf
  3. Tschiatschek, S., & Pernkopf, F. (2013). Asymptotic Optimality of Maximum Margin Bayesian Networks. International Conference on Artificial Intelligence and Statistics (AISTATS), 590–598.

2012

  1. Tschiatschek, S., Mutsam, N., & Pernkopf, F. (2012). Handling Missing Features in Maximum Margin Bayesian Network Classifiers. International Workshop on Machine Learning for Signal Processing (MLSP), 1–6.
  2. Tschiatschek, S., Reinprecht, P., Mücke, M., & Pernkopf, F. (2012). Bayesian Network Classifiers with Reduced Precision Parameters. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 74–89.
  3. Tschiatschek, S., & Pernkopf, F. (2012). Convex Combinations of Maximum Margin Bayesian Network Classifiers. International Conference on Pattern Recognition Applications and Methods (ICPRAM).
  4. Pernkopf, F., Wohlmayr, M., & Tschiatschek, S. (2012). Maximum Margin Bayesian Network Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 34(3), 521–531. https://www.tschiatschek.net/files/pernkopf12mmbn.pdf